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Abstract. Starting with a general one-body Hamiltonian which includeg aji term describing

the coupling between orbital motion and the arbitrary vector fielde investigate some properties

of the semiclassical functionals of various physical quantities. In particular, we show that these
functionals could be written in a very compact way. An approximate expression for the non-
interacting total kinetic energy is given. We also show that these approximate semiclassical
functionals transform by gauge transformation exactly as the corresponding exact quantum
functionals.

1. Introduction

Density functional theory is of considerable interest in the study of the properties of quantum
many-body systems. Following the theorem of Hohenberg and Kohn [1], the ground-state
energy of a many-body system (including kinetic, exchange and correlation energies) can be
represented as a universal functional of the densify. The theorem merely guarantees the
existence of such a functional, but unfortunately the exact form of the latter is not known.
At this level one can perform a density variational calculation in the strict sense, i.e. the
local density is the direct variational quantity. In contrast to this scheme, the Kohn—Sham
method [2] uses the single-particle wavefuncgii) as the basic variable and then treats the
kinetic energy part exactly. However, in the density variational calculation, one needs to know
an approximate form of the kinetic and the exchange-correlation energy functionals. For the
kinetic energy part this is done automatically through the use of a semiclassical approximation.
At the lowest order, this is the well known Thomas—Fermi (TF) theory. Its extension is called
the extended Thomas—Fermi (ETF) method, in which an expansion of the kinetic energy
functional is derived in terms of gradients and higher derivatives of the local density. This is
achieved by an expansion of the density matrix in powers[8].

In the present paper, we are interested in an approximate semiclassical functional of the
non-interacting total kinetic energy pdr, making use of the ETF method. The time reversal
symmetry is broken by the presence oféhe term in the Hamiltonian. In this situation, finite
orbital current and polarization spin density appear in the ground state. We also investigate
the properties of the semiclassical current and spin densities generated by the field

The paper is organized as follows. In section 2 we show that the semiclassical functionals
derived up td:? terms by Grammaticos and Voros [4] for the various densities given below can
be written in a very simple form. A compact form for the total non-interacting kinetic energy
density is obtained. In section 3 we show that these semiclassical (ETF) densities satisfy
the same gauge transformation laws as the corresponding exact quantum densities defined in
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terms of the individual wavefunctions (). Section 4 is devoted to the extension of the above
property with the inclusion of the spin degrees of freedom. As a particular case, the orbital
motion in a magnetic field is briefly treated in section 5. We summarize our results in section 6
and suggest a possible extension of this work.

2. Semiclassical functionals for spin independent Hamiltonian

Consider the general one-body Hamiltonian

"2 - S 1 (@)?

H0=—EV~f(r)V+z(Voa(r)+a(r)~V)+V+§m% (2.1)

whereV anda are position-dependent scalar and arbitrary vector fields, respectively.
Letm*(¥) denote the effective mass value of the patrticle, which differs from the free mass

m. The form factorf is defined as
N m
fr)= m*—(7)

We assumg to be a position-dependent function to allow the study of more general situations.
The one-body wavefunctiop; (r) satisfies the following eigenvalue equation

Hopj =¢j-¢; (2.3)

with ¢; being the corresponding energy.
Recall that the quantum non-interacting density (number densify)and the probability
current density (paramagnetic currept)r) are respectively defined in termsgf as

2.2)

N
n(F) = ¢ -9 (2.4)
j=1
- & - -
@) =5 f 2;[¢7<?) Vo;(F) — ¢;(7) - Voi (2.5)
=

whereN is the total number of particles.
The total non-interacting kinetic energy of tiveparticles system with effective mass$
is given by

Tg = / () b (2.6)

with 7 (¥) being the local kinetic energy defined as
EZ N .
o) =5 f > Ve Vol (2.7)
j=1

One notes the presence of tfidactor in theJ» andt densities due to the effective mass of
the particle.

For the Hamiltonian given by (2.1), Grammaticos and Voros [4] have given functional
relations forj» () and< (*) densities in terms of the local density#) and the fields (7), up
to 22 terms. Their Hamiltonian does not include l%m(&)z/f term; we add it here in order to
work with a gauge invariant theory. These functionals have been used in the context of nuclear
physics for the investigation of nuclear rotation [5]. We report here their results, which are

BAF) = —n() - @) + (5)) (2.8)
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where the superscript scl emphasizes the semiclassical character of these quantities. In (2.8)
the first term on the right-hand side is the usual TF curreni(&jiis an/? correction beyond
the TF method, given by

6)) = (3712)—2/3&4(7){%(% a@) — Vi + %[(%Zf +Vf - Va—(V-a+a-V)VF]
+%[%fx(%fx&)]+%%nx [(%x&)—%(%fxa)“. (2.9)
Using the same notation as in (2.8), the kinetic energy density is given by
59F) = 1o(F) + %mn(ag +(87) (2.10)

with 1o being the usual ETF functional in the case= 0 [3]. This term depends only upon the
densityn(7) and its derivatives. The second term is the TF collective energy due to the field
a. The second-order contributions of the fiéldo 7*¢ () are given by

1 nBF) (1. - 1- 1- - 1 - o 1
8t) = = =23 21Zq . Via+=Vi@)?—-SV@-Vya—=@-Vy(V-a)+ —
(67) 2m(3ﬂ) 7 {4a at o () 4(a o 2(01 )WV - a) 27

x[=26 - (Vf -Va—(@)? V2f+@- - V)2f+@- VIV -a)+VF@-V)a]

3 . -, 1. (- _ 1.
+E(afo) +§(Vn xa)[(an)—?(foa)“. (2.11)
Denote byv the quantityex/f and substitute it in the expressio@ﬁ§) and(ét) already given

above. A considerable simplification occurs and the final result can be written in a very compact
way as

6j) = (3712)*2/3%(6 x G) (2.12)

| e —fnw(A Q)z}
(87) = Fm(3r?) [Zv <f x G) (V7 (2.13)

with G being the following vector:

G = fn1/3<% x %) (2.14)

When integrated over the whole space, the first term in (2.13) vanishes. This allows us to give
the following compact expression fé using (2.6) and (2.10) up to ordef —

-

T, = / 10(F) & + }m/n(i_") . @dsr - 1-m(3772)72/3‘/~ fn1/3<% X g>2d3r (2.15)
s 0 2 f ) f .

where we recall that the first real term is obtained for vanishing &ielthd is explicitly given
in [3].

3. Local gauge transformation of semiclassical densities

Let us now recall the gauge transformation rules of the exact quantum densities given
respectively by (2.4), (2.5) and (2.7). Under a local gauge transformation of the Slater
determinant¥), constructed out of the;’s, one can write

N
') = exp [i > CD(?/-)}N') (3.1)
j=1
where® (7;) is an arbitrary scalar function.
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In this gauge transformation each individual functignis multiplied by a phase factor
exp(i®(7;)). By imposing thef factor to be gauge invariant, the gauge transformed densities
are

n(#) — n' () = n@) (3.2)

T

Jp(r) = jp(r) = jp(r) + n—qfn(r) -Vo (3.3)
72

() > U(F) = 1(F) +hjp(F) - VO + ;—mfn(%cb)z. (3.4)

These transformation laws are strong constraints. To be admissible, any approximate form of
these densities is bound to satisfy these transformation laws. Before going to the semiclassical
functionals, we mention that the transformed Wavefunoyipnz exp(i®)g; is a solution of

the same Scladinger equation ag;, provided we make the following generalized substitution

- - hm_-
a—>a——mVCI>. (3.5)

Consider now the gauge transformation of the fi@|dgiven by (3.5). The vecto6,
(2.14) and Consequent(y\if), (2.12), are gauge invariant. Then one can easily verify that the
full semiclassical paramagnetic currg‘rﬁf' transforms exactly as the corresponding quantum
paramagnetic current, equation (3.3).

Let us now calculate the gauge transformed, semiclassical, kinetic energy density denoted
by 3¢ (see equations (2.10) and (2.13)). The latter contains three terms, Téren, which
depends only upon(7) density, is gauge invariant

- 2
5 = o+ %mnf<% - %%QJ) + %m(3n2)_2/3
1- a h- 5 B . a\?
v ((2-2Ve - vxZ .
o ((F-e) <6) - 7 () | @9

S0 one obtains
b | Ez - 2 T =2 O E 2\ —2/3v - ~
e 2—nf(VcI>) —Thna - Vo — Z(3rr Yy 2RV . [VE x G].  (3.7)
m

To evaluate the last term we use the following relation for any two vectasd B,
V.- AxB)=B-(VxA) —A-(VxB) (3.8)
and by using the expression g density, (2.8) and (2.12), one finally gets

I > e 2
oSeh — psel g %nf(VdD)z + hjf)d .V (3.9

which is the desired result. _

Finally we note that, from the, j, and r densities, one can build two local gauge
invariant quantities. The first one is the vorticity= V x (fp/n) and the second is the scalar
T — (m/2f)(j3/n). The latter represents the local non-collective kinetic energy. From the
above analysis the corresponding semiclassical quantities are also local gauge invariants.

4. Spin-dependent Hamiltonian case

Let us now extend the one-body Hamiltonian by adding the teBq 5 :
H:Ho"'ﬁéo-a. (41)
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The field By is supposed to be gauge invariant. It may contain many contributions, such as
the coupling of the external field with the spin, exchange-correlation and spin—orbit coupling.
We limit ourselves to a simple case of the first type of coupling and recall that for%sqhie
vectora has as components the usuat 2 Pauli matrices.

Any operator of interest can be expressed ax&matrix of operators. In particular, the
density matrix operator is defined by

n= %(ﬁoﬁi-&). (4.2)
We are only interested in local quantities, therefore in spatial coordinates one has

no(¥) = Y (7, olAlF, o) (4.3)

o

i) =Y (F.oli-GIF. o) (4.9)

[

with no(¥) andri (¥) being respectively the scalar and the vector spin densities.

In [6] Grammaticos and Voros extended their work to spin-dependent Hamiltonians. For
the simplified Hamiltonian, (4.1), th& andzs° densities remain unchanged, and they obtain
the following functional for the spin density

3Im(3 2\—2/3 N
_%néﬁ’go (4.5)

which is local gauge invariant.

nFr) =

5. Application to a particular case: orbital motion in a magnetic field

In our approach the constraining fieldmay result from several external fields= )", &;.

It can also incorporate an exchange-correlation contribution in a self-consistent approach. In
this section we treat a simple example of only one external vector field. Suppose an electron
system in a three-dimensiontl(r) scalar potential is subjected to a magnetic figldThe
one-body Hamiltonian in the case of constant effectifenass (ignoring the spin degrees of
freedom) is given by

H hoii 2+V(*)
= —V+- 7
2m* \ i c

where A is the vector potential related ® by B=VxA (notee > 0). It can be easily
seen that the above Hamiltonian is a particular case of the one given by (2.1) by just putting
a = (e/m*c)A. Let us report here the expression of the total kinetic energy

2 2
Tg = /ro(?) a3+ ¢ /n(?) A2 — e—(37r2)_2/3/n1/332d3r.
2m*c? 8m*c2

This expression is useful in a variational-type calculation. The corresponding expressions for
thefff' andr® densities are obtained in a similar way by using, respectively, (2.8), (2.10) and
(2.12), (2.13).

A more complete analysis will be presented in a forthcoming work, which will also include
the contribution of the spin degrees of freedom. A direct link will be made between these
semiclassical functionals and the work of Vignateal [7] on the current-density functional
theory.
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6. Conclusion

Using the semiclassical ETF approach, for a general spin-dependent one-body Hamiltonian,
we have shown that the various ETF densities could be written in a greatly simplified way.
We have obtained a compact expression for the total kinetic energy. We have also shown that
the semiclassical ETF functionals obey the gauge transformation laws as the exact quantum
functionals. Grammaticos and Voros [4] obtained the various functionals b terms in

the case ofr = 0 and up to:? terms only in the case of a non-vanishing figldThis is due

to the lengthy expressions in the latter case. From the present analysis, we can conclude that
these fourth-order terms, which have not been calculated, must be gauge invariant in order
to satisfy the exact gauge transformation laws. Finite-temperature ETF functionals have also
been derived in the absence of the vector field [8]. We extend these calculations to the present
functionals of a non-vanishing field case. Our results will be presented in a forthcoming work.
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