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Abstract. Starting with a general one-body Hamiltonian which includes anEα · Ep term describing
the coupling between orbital motion and the arbitrary vector fieldEα, we investigate some properties
of the semiclassical functionals of various physical quantities. In particular, we show that these
functionals could be written in a very compact way. An approximate expression for the non-
interacting total kinetic energy is given. We also show that these approximate semiclassical
functionals transform by gauge transformation exactly as the corresponding exact quantum
functionals.

1. Introduction

Density functional theory is of considerable interest in the study of the properties of quantum
many-body systems. Following the theorem of Hohenberg and Kohn [1], the ground-state
energy of a many-body system (including kinetic, exchange and correlation energies) can be
represented as a universal functional of the densityn(Er). The theorem merely guarantees the
existence of such a functional, but unfortunately the exact form of the latter is not known.
At this level one can perform a density variational calculation in the strict sense, i.e. the
local density is the direct variational quantity. In contrast to this scheme, the Kohn–Sham
method [2] uses the single-particle wavefunctionϕj (Er) as the basic variable and then treats the
kinetic energy part exactly. However, in the density variational calculation, one needs to know
an approximate form of the kinetic and the exchange-correlation energy functionals. For the
kinetic energy part this is done automatically through the use of a semiclassical approximation.
At the lowest order, this is the well known Thomas–Fermi (TF) theory. Its extension is called
the extended Thomas–Fermi (ETF) method, in which an expansion of the kinetic energy
functional is derived in terms of gradients and higher derivatives of the local density. This is
achieved by an expansion of the density matrix in powers of ¯h [3].

In the present paper, we are interested in an approximate semiclassical functional of the
non-interacting total kinetic energy partTS , making use of the ETF method. The time reversal
symmetry is broken by the presence of theEα · Ep term in the Hamiltonian. In this situation, finite
orbital current and polarization spin density appear in the ground state. We also investigate
the properties of the semiclassical current and spin densities generated by the fieldEα.

The paper is organized as follows. In section 2 we show that the semiclassical functionals
derived up toh̄2 terms by Grammaticos and Voros [4] for the various densities given below can
be written in a very simple form. A compact form for the total non-interacting kinetic energy
density is obtained. In section 3 we show that these semiclassical (ETF) densities satisfy
the same gauge transformation laws as the corresponding exact quantum densities defined in
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terms of the individual wavefunctionsϕj (Er). Section 4 is devoted to the extension of the above
property with the inclusion of the spin degrees of freedom. As a particular case, the orbital
motion in a magnetic field is briefly treated in section 5. We summarize our results in section 6
and suggest a possible extension of this work.

2. Semiclassical functionals for spin independent Hamiltonian

Consider the general one-body Hamiltonian

H0 = − h̄
2

2m
E∇ · f (Er) E∇ +

h̄

2i
( E∇ · Eα(Er) + Eα(Er) · E∇) + V +

1

2
m
(Eα)2
f

(2.1)

whereV andEα are position-dependent scalar and arbitrary vector fields, respectively.
Letm∗(Er) denote the effective mass value of the particle, which differs from the free mass

m. The form factorf is defined as

f (Er) = m

m∗(Er) . (2.2)

We assumef to be a position-dependent function to allow the study of more general situations.
The one-body wavefunctionϕj (Er) satisfies the following eigenvalue equation

H0ϕj = εj · ϕj (2.3)

with εj being the corresponding energy.
Recall that the quantum non-interacting density (number density)n(Er) and the probability

current density (paramagnetic current)EjP (Er) are respectively defined in terms ofϕj as

n(Er) =
N∑
j=1

ϕ∗j · ϕj (2.4)

EjP (Er) = h̄

2mi
f

N∑
j=1

[ϕ∗j (Er) · E∇ϕj (Er)− ϕj (Er) · E∇ϕ∗j ] (2.5)

whereN is the total number of particles.
The total non-interacting kinetic energy of theN particles system with effective massm∗

is given by

TS =
∫
τ(Er) d3r (2.6)

with τ(Er) being the local kinetic energy defined as

τ(Er) = h̄2

2m
f

N∑
j=1

[ E∇ϕ∗j · E∇ϕj ]. (2.7)

One notes the presence of thef factor in the EJP andτ densities due to the effective mass of
the particle.

For the Hamiltonian given by (2.1), Grammaticos and Voros [4] have given functional
relations forEjP (Er) andτ(Er) densities in terms of the local densityn(Er) and the fieldEα(Er), up
to h̄2 terms. Their Hamiltonian does not include the1

2m(Eα)2/f term; we add it here in order to
work with a gauge invariant theory. These functionals have been used in the context of nuclear
physics for the investigation of nuclear rotation [5]. We report here their results, which are

Ej scl
P (Er) = −n(Er) · Eα(Er) + (δ Ej) (2.8)
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where the superscript scl emphasizes the semiclassical character of these quantities. In (2.8)
the first term on the right-hand side is the usual TF current and(δ Ej) is anh̄2 correction beyond
the TF method, given by

(δ Ej) = (3π2)−2/3n
1/3(Er)

4

{
E∇( E∇ · Eα)− E∇2Eα +

1

f
[( E∇2f + E∇f · E∇)Eα − ( E∇ · Eα + Eα · E∇) E∇f ]

+
1

f 2
[ E∇f × ( E∇f × Eα)] +

1

3n
E∇n×

[
( E∇ × Eα)− 1

f
( E∇f × Eα)

]}
. (2.9)

Using the same notation as in (2.8), the kinetic energy density is given by

τ scl(Er) = τ0(Er) +
1

2
mn(Er) (Eα)

2

f
+ (δτ ) (2.10)

with τ0 being the usual ETF functional in the caseEα = 0 [3]. This term depends only upon the
densityn(Er) and its derivatives. The second term is the TF collective energy due to the field
Eα. The second-order contributions of the fieldEα to τ scl(Er) are given by

(δτ ) = 1

2
m(3π2)−2/3n

1/3(Er)
f

{
1

4
Eα · E∇2Eα +

1

8
E∇2(Eα)2 − 1

4
E∇(Eα · E∇)Eα − 1

2
(Eα · E∇)( E∇ · Eα) +

1

2f

×[−2Eα · ( E∇f · E∇)Eα−(Eα)2 · E∇2f +(Eα · E∇)2f +(Eα · E∇f )( E∇ · Eα)+ E∇f (Eα · E∇)Eα]

+
3

4f 2
(Eα × E∇f )2 +

1

6n
( E∇n× Eα)

[
( E∇ × Eα)− 1

f
( E∇f × Eα)

]}
. (2.11)

Denote byEv the quantityEα/f and substitute it in the expressions(δ Ej) and(δτ ) already given
above. A considerable simplification occurs and the final result can be written in a very compact
way as

(δ Ej) = (3π2)−2/3 1

4
( E∇ × EG) (2.12)

(δτ ) = 1

2
m(3π2)−2/3

[
1

2
E∇ ·
( Eα
f
× EG

)
− f n

1/3

4

(
E∇ × Eα

f

)2]
(2.13)

with EG being the following vector:

EG = f n1/3

(
E∇ × Eα

f

)
. (2.14)

When integrated over the whole space, the first term in (2.13) vanishes. This allows us to give
the following compact expression forTs using (2.6) and (2.10) up to order ¯h2

Ts =
∫
τ0(Er) d3r +

1

2
m

∫
n(Er) · (Eα)

2

f
d3r − 1

8
m(3π2)−2/3

∫
f n1/3

(
E∇ × Eα

f

)2

d3r (2.15)

where we recall that the first real term is obtained for vanishing fieldEα, and is explicitly given
in [3].

3. Local gauge transformation of semiclassical densities

Let us now recall the gauge transformation rules of the exact quantum densities given
respectively by (2.4), (2.5) and (2.7). Under a local gauge transformation of the Slater
determinant|9〉, constructed out of theϕj ’s, one can write

|9 ′〉 = exp

[
i
N∑
j=1

8(Erj )
]
|9〉 (3.1)

where8(Erj ) is an arbitrary scalar function.
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In this gauge transformation each individual functionϕj is multiplied by a phase factor
exp(i8(Erj )). By imposing thef factor to be gauge invariant, the gauge transformed densities
are

n(Er)→ n′(Er) = n(Er) (3.2)

EjP (Er)→ Ej ′P (Er) = EjP (Er) +
h̄

m
f n(Er) · E∇8 (3.3)

τ(Er)→ τ ′(Er) = τ(Er) + h̄ EjP (Er) · E∇8 +
h̄2

2m
fn( E∇8)2. (3.4)

These transformation laws are strong constraints. To be admissible, any approximate form of
these densities is bound to satisfy these transformation laws. Before going to the semiclassical
functionals, we mention that the transformed wavefunctionϕ′j = exp(i8)ϕj is a solution of
the same Schrödinger equation asϕj , provided we make the following generalized substitution

Eα→ Eα − h̄m
f
E∇8. (3.5)

Consider now the gauge transformation of the fieldEα, given by (3.5). The vectorEG,
(2.14) and consequently(δ Ej), (2.12), are gauge invariant. Then one can easily verify that the
full semiclassical paramagnetic currentEj scl

P transforms exactly as the corresponding quantum
paramagnetic current, equation (3.3).

Let us now calculate the gauge transformed, semiclassical, kinetic energy density denoted
by τ scl′ (see equations (2.10) and (2.13)). The latter contains three terms. Theτ0 term, which
depends only uponn(Er) density, is gauge invariant

τ scl′ = τ0 +
1

2
mnf

( Eα
f
− h̄

m
E∇8

)2

+
1

2
m(3π2)−2/3

×
{

1

2
E∇ ·
(( Eα

f
− h̄

m
E∇8

)
× EG

)
− f n

1/3

4

(
E∇ × Eα

f

)2}
(3.6)

so one obtains

τ scl′ = τ scl +
h̄2

2m
nf ( E∇8)2 − h̄nEα · E∇8− h̄

4
(3π2)−2/3 E∇ · [ E∇8× EG]. (3.7)

To evaluate the last term we use the following relation for any two vectorsEA and EB,

E∇ · ( EA× EB) = EB · ( E∇ × EA)− EA · ( E∇ × EB) (3.8)

and by using the expression ofj scl
P density, (2.8) and (2.12), one finally gets

τ scl′ = τ scl +
h̄2

2m
nf ( E∇8)2 + h̄ Ej scl

P · E∇8 (3.9)

which is the desired result.
Finally we note that, from then, EjP and τ densities, one can build two local gauge

invariant quantities. The first one is the vorticityEc = E∇ × ( EjP /n) and the second is the scalar
τ − (m/2f )( Ej2

P /n). The latter represents the local non-collective kinetic energy. From the
above analysis the corresponding semiclassical quantities are also local gauge invariants.

4. Spin-dependent Hamiltonian case

Let us now extend the one-body Hamiltonian by adding the term ¯h EB0 · Eσ :

H = H0 + h̄ EB0 · Eσ . (4.1)
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The field EB0 is supposed to be gauge invariant. It may contain many contributions, such as
the coupling of the external field with the spin, exchange-correlation and spin–orbit coupling.
We limit ourselves to a simple case of the first type of coupling and recall that for spin1

2 the
vectorEσ has as components the usual 2× 2 Pauli matrices.

Any operator of interest can be expressed as a 2×2 matrix of operators. In particular, the
density matrix operator is defined by

n̂ = 1
2(n̂0 + En · Eσ). (4.2)

We are only interested in local quantities, therefore in spatial coordinates one has

n0(Er) =
∑
σ

〈Er, σ |n̂|Er, σ 〉 (4.3)

En(Er) =
∑
σ

〈Er, σ |n̂ · Eσ |Er, σ 〉 (4.4)

with n0(Er) andEn(Er) being respectively the scalar and the vector spin densities.
In [6] Grammaticos and Voros extended their work to spin-dependent Hamiltonians. For

the simplified Hamiltonian, (4.1), theEj scl
P andτ scl densities remain unchanged, and they obtain

the following functional for the spin density

En(Er) = −3m(3π2)−2/3

h̄f
n

1/3
0
EB0 (4.5)

which is local gauge invariant.

5. Application to a particular case: orbital motion in a magnetic field

In our approach the constraining fieldEα may result from several external fieldsEα = ∑
i Eαi .

It can also incorporate an exchange-correlation contribution in a self-consistent approach. In
this section we treat a simple example of only one external vector field. Suppose an electron
system in a three-dimensionalV (Er) scalar potential is subjected to a magnetic fieldEB. The
one-body Hamiltonian in the case of constant effectivem∗ mass (ignoring the spin degrees of
freedom) is given by

H = 1

2m∗

(
h̄

i
E∇ +

e

c
EA
)2

+ V (Er)

where EA is the vector potential related toEB by EB = E∇ × EA (notee > 0). It can be easily
seen that the above Hamiltonian is a particular case of the one given by (2.1) by just putting
Eα = (e/m∗c) EA. Let us report here the expression of the total kinetic energy

TS =
∫
τ0(Er) d3r +

e2

2m∗c2

∫
n(Er) · EA2 d3r − e2

8m∗c2
(3π2)−2/3

∫
n1/3 EB2 d3r.

This expression is useful in a variational-type calculation. The corresponding expressions for
the Ej scl

P andτ scl densities are obtained in a similar way by using, respectively, (2.8), (2.10) and
(2.12), (2.13).

A more complete analysis will be presented in a forthcoming work, which will also include
the contribution of the spin degrees of freedom. A direct link will be made between these
semiclassical functionals and the work of Vignaleet al [7] on the current-density functional
theory.
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6. Conclusion

Using the semiclassical ETF approach, for a general spin-dependent one-body Hamiltonian,
we have shown that the various ETF densities could be written in a greatly simplified way.
We have obtained a compact expression for the total kinetic energy. We have also shown that
the semiclassical ETF functionals obey the gauge transformation laws as the exact quantum
functionals. Grammaticos and Voros [4] obtained the various functionals up to ¯h4 terms in
the case ofEα = 0 and up toh̄2 terms only in the case of a non-vanishing fieldEα. This is due
to the lengthy expressions in the latter case. From the present analysis, we can conclude that
these fourth-order terms, which have not been calculated, must be gauge invariant in order
to satisfy the exact gauge transformation laws. Finite-temperature ETF functionals have also
been derived in the absence of the vector field [8]. We extend these calculations to the present
functionals of a non-vanishing field case. Our results will be presented in a forthcoming work.
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